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This work investigates the ability of multiplicative (on the basis of product units) and sigmoidal neural
models built by an evolutionary algorithm to quantify highly overlapping chromatographic peaks. To test
this approach, twoN-methylcarbamate pesticides, carbofuran and propoxur, were quantified using a classic
peroxyoxalate chemiluminescence reaction as a detection system for chromatographic analysis. The four-
parameter Weibull curve associated with the profile of the chromatographic peak estimated by the Levenberg-
Marquardt method was used as input data for both models. Straightforward network topologies (one output)
allowed the analytes to be quantified with great accuracy and precision. Product unit neural networks provided
better information ability, smaller network architectures, and more robust models (smaller standard deviation).
The reduced dimensions of the selected models enabled the derivation of simple quantification equations to
transform the input variables into the output variable. These equations can be more easily interpreted from
a chemical point of view than those provided by sigmoidal neural networks, and the effect of both analytes
on the characteristics of chromatographic bands, namely profile, dispersion, peak height, and residence
time, can be readily established.

INTRODUCTION

Over the past decade, increased attention has been paid
to the applications of “soft” models in chemistry. Soft models
can be defined as approaches in which an explicit mathe-
matical model is neither formulated nor used. The prime
example of such an approach is the use of artificial neural
networks (ANNs), which can be applied to various problems
such as spectra modeling, analyte concentration prediction,
compound classification, or multivariate calibration, among
others.1-8 Multilayer perceptron (MLP) modeling is often
found to be more efficient than other methods, but it suffers
from the perception of being a “black box” heuristic tool.
This capability is supported by the fact that a neural network
with sigmoidal transfer functions can approximate any
continuous function with a prescribed degree of accuracy
by determining the number of neurons in the hidden layer.9-11

Yet, the approximation of a relationship remains a problem,
especially when the information provided by the instrumen-
tation is too unwieldy to model, as many inputs do not
contain important information, such as in separation science
(chromatographic analysis). Furthermore, limitations of the
universal approximation capabilities of sigmoidal networks
have been recently reported on the basis that the number of
summation units required to approximate continuous func-
tions can be prohibitive.12 To overcome this difficulty, so-
called product unit neural networks (PUNNs) can be a
valuable alternative. These are a type of multiplicative neural

model introduced by Durbin and Rumelhart,13 in which the
inputs are multiplied after they have been raised to some
power specified by an adjustable weight. Neurons with
multiplicative responses are extremely powerful computa-
tional elements in neural networks and for more biologically
motivated models,14 which is supported on the basis of the
super-additive principle: the merger of several sensorial
factors provides more information than the factors do
separately.15 These models express multivariate polynomial
equations, and it is possible that available domain knowledge
will be straightforwardly embedded within the neural net-
works, and we can easily interpret the results.16 In short, so
far, MLP modeling has suffered from difficulties in training
models, and therefore, new strategies are required to find
networks with reduced architecture, which demonstrate a
better generalization ability, in order to enhance the knowl-
edge extraction from the trained models, which is important
in order to gain the users’ confidence and acceptance.

During the past decade, ANNs have been increasingly
applied in analytical chemistry, and in separation science as
well. Optimization in separation sciences is still an important
demand from analysts who are looking for a certain resolu-
tion or selectivity with a limited number of experiments in
minimum time.17 In this context, ANN models have been
applied for peak tracking18 and response surface modeling19

in high-performance liquid chromatography (HPLC) opti-
mization, assessment of chromatographic peak purity,20 or
for deconvolution of overlapping peaks.21 Although the use
of ANNs for the resolution of overlapping chromatographic

* Corresponding author phone: +34-957-212099; e-mail:
qa1sirom@uco.es.

894 J. Chem. Inf. Model.2005,45, 894-903

10.1021/ci049697o CCC: $30.25 © 2005 American Chemical Society
Published on Web 05/12/2005



analytical signals has gained popularity over the past years,
few publications have dealt with this subject and some
difficulties have yet to be resolved.22-25

In this paper, we propose a new ANN model, based on
PUNNs, as a powerful tool to achieve the desired selectivity
in chromatographic analysis, such as the quantification of
analytes that provide highly overlapping chromatographic
peaks obtained from a single detector instrument and also
the extraction of quality information about the chemical
problem being addressed. Although we recently dealt with
this problem using classical sigmoidal networks pruned by
a regularization method and with architectures designed by
a real genetic code algorithm,25 in order to evaluate the real
ability of PUNN models versus classical MLP ones, a
comparison was made between both models, in this case by
using the same evolutionary algorithm for the optimization
of the network topologies. Three strategies were merged in
the proposed model: (1) The number of input neurons was
significantly reduced. Because, in chromatographic analysis,
the chromatogram is defined by a large number of signal/
time response pairs and considering that they do not provide
important information at any time, the network inputs were
estimated by the Levenberg-Marquardt method in the form
of a four-parameter Weibull curve associated with the profile
of the chromatographic band. (2) We used neural networks
based on product units (PUNNs) because sigmoidal or radial
transfer functions do not guarantee the best generalization
or fast learning. These families of parameterized transfer
functions provide flexible decision borders with the advan-
tages of increased information capacity and the ability to
form higher-order combinations of inputs.26 Consequently,
network architecture can be reduced and the error in approx-
imation decreased, without detriment to its approximation
capability, because product units can approximate any
function with a given accuracy as well as sigmoidal neural
networks. (3) PUNN model selection was used to compare
different neural network models with regard to some objec-
tives (i.e., best fitting to the data, lower model complexity,
best generalization capability, etc.). A population-based
evolutionary algorithm was used for architecture design and
estimation of weights,27-29 which began the search with an
initial population. At each iteration, the population was
updated using a population update algorithm based on
replication and two types of mutation (structural and
parametric) operations. The structural mutation implies a
modification of the structure of the function performed by
the network, which allows the exploration of different regions
of the search space, by changing the nodes in the hidden
layer or the number of connections associated with the input
or hidden nodes with a predetermined probability. The
parametric mutation modifies the coefficients of the model
by using a self-adaptive annealing algorithm. In this process,
a random Gaussian value was used to change the weights of
connections associated with nodes of input and hidden layers.
It should be pointed out that the crossover operator was not
used, bearing in mind its inability to handle permutation
problems related to the fact that the same PUNN model can
be shown by several representations. To test this approach,
two N-methylcarbamate pesticides, carbofuran (CF) and
propoxur (P), were quantified using a classic peroxyoxalate
chemiluminescence (CL) reaction as a detection system for
chromatographic analysis. Further details on the analytical

methodology are described elsewhere.30 To our knowledge,
no study on the use of PUNN models trained and designed
by an evolutionary algorithm has, to date, been reported.

THEORY

The first step of the proposed approach for the quantifica-
tion of overlapping chromatographic peaks consists of
extracting useful information from them in order to select
the inputs to the ANNs. When the chromatographic peaks
are examined, it can be observed that the signals set (ti, Sti)
can be accurately fitted by least-squares regression to a four-
parameter Weibull curve, defined bySm (peak height),B
(dispersion of the analytical signal values fromSm), C (related
to the function shape, which is associated with the inflection
points of the curve and defines the concavity and convexity
regions), andtm (residence time, associated with the time
corresponding to the peak maximum), when the time domain
ranges fromti > tm - B[(C - 1)/C]1/C. If ti is standardized
by subtractingtm, dividing by the dispersion parameterB,
and displacing the standardized variable [(C - 1)/C]1/C units,
a new temporal variablet′i can be defined, that is,t′i )
(ti - tm)/B + [(C - 1)/C]1/C, which is characterized by the
location parameter [(C - 1)/C]1/C and a dispersion parameter
equal to 1. In this case,Sti is the response variable, which is
proportional to the contribution (concentration) of each
component to the chromatographic peak, andt′i is the
independent variable. If it is assumed that the change ofSti

with time is proportional to the inverse of the transformation
time (t′i) and the parameter (C) associated with the convex-
ity of the function, the following differential equation can
be obtained:

Considering thatSti at time t′i ) 0 is given by SmC
exp[-(C - 1)/C], where Sm ) Stm, the integration of this
equation provides

for t′i g 0, that is,ti > tm - B[(C - 1)/C]1/C, andC > 1,
which corresponds to a four-parameter Weibull function.

As can be derived from eq 2, there is a strong interaction
of parameterC with tm and B through t ′i and with Sm

throughSti. This interaction is maintained even following
the appropriate transformations of the signals for the
linearization of the model. In fact, if eq 2 is expressed in its
logarithm form

and thet ′i value is substituted, the following equation can
be obtained:

in which the interactions among the parametersC, tm, andB

∂Sti

∂(t′i)
) (C - 1

t′i
- C)Sti

(1)

Sti
) SmC exp[-(C-1)/C] (t′i)

C-1 e-t′iC (2)

ln Sti
) ln Sm + ln C - C - 1

C
+ (C - 1) ln(t′i) - t′iC (3)

ln Sti
) ln Sm + ln C - C - 1

C
+ (C - 1) ln[ti - tm

B
+

(C - 1
C )1/C] - [ti - tm

B
+ (C - 1

C )1/C]C (4)
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can be observed. Figure 1 shows the fit provided by the four-
parameter Weibull function on a typical overlapping chro-
matographic peak obtained in the HPLC determination of
mixtures of CF and P with CL detection. When both curves
are examined and from the estimated statistical parameters,
it can be concluded that the Weibull function is a fine tool
for modeling this kind of chromatographic peak.

Multiplicative Neural Network Model . Let R k be an
n-dimensional Euclidean space andK a compact subset of
it defined byK ) {(x1, x2, ..., xk) ∈ R k: xi ∈ R +, i ) 1, 2,
..., k}. We represent byF(K) the family of functionsf: K ⊂
R k f R given by

whereâj andwji ∈ R, andp andk ∈ N. This typology of
functions can be viewed as a polynomial with real exponents,
and by appropriately choosing the exponents of the function
f, it is easy to observe that the polynomial regression models
are subsets ofF(K). For example, by appropriate selection
of the exponents,wji ∈{0, 1, 2}, a second-order polynomial
regression model or quadratic response surface can be
obtained:

Let us now observe the data setDE {xi, yi} for l ) 1, 2,
..., n, for which the regression model can be expressed by
means of a lineal potential base function topology or PUNNs
as eq 5. In these models, the product units can be defined as
follows:

where wji ) (wj1, wj2, ..., wjk) is a parameter set for the
potential base functions.

This kind of function topology can be represented by a
neural network architecture, as shown in Figure 2, with the
following features: one input layer for the input variables,
one hidden layer with a suitable number of nodes, and one
output layer. Furthermore, the nodes of one layer cannot be
connected themselves and there are no direct connections
between the input and output layers. As stated above, in the
chemical problem addressed in this study, the quantification
of analytes that provide highly overlapping chromatographic
peaks, thek network inputs, which represent the independent
variables (x1, x2, ...,xk), are represented by the four-parameter
Weibull curve associated with the profile of the chromato-
graphic peak and estimated by the Levenberg-Marquardt
method; thep nodes in the hidden layer represent the term
numbers of the model and, therefore, the number of product
units considered, and the one node in the output layer
corresponds to the concentration of the analyte to be analyzed
in the sample, theN-methylcarbamate pesticide, CF or P in
our case.

The transfer function of thejth node of the hidden layer
is given by

wherewji ∈[0, L] is the weight for the connection between
the ith node of the input layer and thejth nodes of the hidden
layer. The linear transfer function of the node of the output
layer is given by

whereâj ∈ [-M, M] is the weight for the connection between
the jth node of the hidden layer and the node of the output
layer. In brief, the topology for the functions defined in eq
5 can be readily represented by a PUNN.

Evolutionary Algorithm. This section deals with the
framework of the evolutionary process to achieve the
selection of the PUNN model. The population (PUNN
models) is subjected to the operations of replication and

Figure 1. Chromatographic peak fitted to a four-parameter Weibull
function. (O) Experimental data and (-) Weibull curve. Parameter
value( standard deviation. [CF] and [P] are 30 and 150 ng/mL,
respectively.

Figure 2. Functional scheme of the multiplicative neural network
based on product units.
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mutation (parametric and structural). Crossover is not used
because of its disadvantages in deceptive environments;31

in fact, many-to-one mapping should be considered for the
representation (genotype) of the phenotype because two
networks with their hidden nodes contained differently in
their chromosomes will still be equivalent (see Figure 3). In
general, any permutation of the hidden nodes will produce
functionally equivalent networks with different chromosome
representations. This problem makes the crossover operator
very inefficient and ineffective in producing good offspring.
With these features, the algorithm falls in the class of
evolutionary programming.32 Evolutionary programming is
preferable to genetic algorithms when separating the search,
and evaluation space does not afford an advantage. The
general structure of the evolutionary algorithm, which is
applied to an initial population ofNm individuals (PUNN
models), can be verified in the following steps:

1. Evaluate the fitness score for each individual of the
population on the basis of the objective function.

2. Copy the best individual to the next generation.

3. The best 10% of the population substitutes the worst
10% of individuals.

4. Apply parametric mutation operators to the best 10%
of the population.

5. Apply structural mutation parametrics to the rest of the
population.

These steps should be repeated until the population
converges or the time is up.

The algorithm initializes the population with randomly
generated networks. The number of hidden nodes for each
network is chosen from a uniform distribution in the interval
[1, p], where p corresponds to the maximum number of
hidden nodes considered. The number of initial connections
from each hidden node to an input node is chosen similarly
from a uniform distribution in the interval [1,k], wherek is
the number of independent variables of the model (the
four-parameter Weibull curve associated with the profile
of the chromatographic peak in our case). Once a topology
has been chosen, all connection weights are randomly
assigned uniformly over the range [0,L] for the connec-
tions from an input node to hidden nodes and the range
[-M, M] for the connections from hidden nodes to the output
node.

In each generation of the search, the networks are first
evaluated by the fitness function

in which the relative error,E(f), is given by

yl and ŷl being the experimental and expected values for the
analyte concentration in the mixture, respectively, andnT

being the number of patterns used in the training set. The
new population is generated replicating the best 10% of the
former population, which substitutes the worst 10% of
individuals; therefore, the number of individuals in the
population is constant during the evolutionary process.

Mutations are separated into two classes: parametric
mutation alters the values of exponents and coefficients of
the functions of the population, and structural mutation alters
the space of the parameters. Parametric mutation operators
were applied to the best 10% of the population and structural
mutation to the rest of the population. The severity of a
mutation to an individualf is dictated by the function’s
temperatureT(f) given by

whereA(f) is the fitness function. Thus, the temperature is
determined by how close the function is to being a solution
to the problem. Parametric mutations are accomplished each
parameterwji and âj of a function f with Gaussian noise,
where the variance of normal distribution depends on the
function’s temperature. So, networks with a high temperature
are mutated severely and those with a low temperature only
slightly. This allows a coarse-grained search, initially, and
progressively finer-grained searches as the network ap-
proaches the solution to the problem. To be exact, the
exponentswji of the function, which represent the weights
of the connections between an input and hidden nodes, are
modified as follows:

whereê1 ∈N[0, R1(t) T(f)] represents a normally distributed
one-dimensional random variable with mean 0 and variance
R1(t) T(f). The coefficientâj of the functionf, representing
the weights of the connections between a hidden node and
the output node, is modified as follows:

whereê2 ∈N[0, R2(t) T(f)] represents, in a similar way, a
normally distributed one-dimensional random variable with
mean 0 and varianceR2(t) T(f).

It should be pointed out that the modification of the
exponents is different so that coefficients, that isR1(t) ,
R2(t), are adaptively changed in every generation by some
predefined rule. In essence, the functionsR1(t) andR2(t)

Figure 3. Effect of the permutation process on the network
topology.
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define the mutation strength in each case, and specifically
for i ) 1, 2, they are defined by

whereA(s) represents the fitness of the best individual in
thesth generation and the parametersâ andr are fixed, user-
defined parameters. Taking into account that a generation is
defined as successful if the best individual of the population
is better than the best individual of the previous generation,
if many successful generations are observed, this indicates
that the best solutions lie in a better region in the search
space. In this case, we increase the mutation strength in the
hope of finding ever better solutions closer to the optimum
solution. If the fitness of the best individual is constant in
different generations, we decrease the mutation strength. In
the other cases, the mutation strength is constant.

Once the mutations are made, the fitness of the individual
is recalculated and the usual simulated annealing criterion
is applied. Given that∆A is the difference in the fitness
function before and after the random step, if∆A g0, the
step is accepted, and if∆A < 0, then the step is accepted
with a probability

whereT is the current temperature.
Structural mutation is more complex because it implies a

modification of the structure of the network. There are five
different structural mutations:

1. Addition of a node.The node is added with no
connections to enforce the behavioral link with its parents.

2. Deletion of a node.A node is selected randomly and
deleted together with its connections.

3. Addition of a connection.A connection is added, with
weight 0, to a randomly selected node. There are two types
of connection: from an input node to a hidden node and
from a hidden node to the output node.

4. Deletion of a connection.A connection is selected and
removed.

5. Join nodes.Two hidden nodesa and b, selected
randomly, are replaced by another nodec.

In this process, the common connections are preserved as
are the noncommon connections, although only the former
provide a probability higher than 0.5. The weights for the
common connections are calculated as follows:

for connections between nodes of the hidden and output
layers and

for connections between input and hidden layers. An
illustrative example of this process in shown in Figure 4.

All of the above mutations are made sequentially in the
same generation on the same network. For each mutation,
there is a minimum value,∆m, and a maximum value,∆M,
and the number of elements (nodes and connections) involved
in the mutation is calculated as follows:

Finally, the system is evolved until the average fitness of
the network population stops growing, when functionsR1(t)
andR2(t) are near to zero. The values of the parameters for
all experiments are shown in Table 1. It should be pointed
out that the algorithm is quite robust to the modification of
these parameters.

EXPERIMENTAL SECTION

Twenty five chromatograms provided by samples contain-
ing uniformly distributed concentrations of CF (30-150
ng/mL) and P (30-210 ng/mL) were prepared in triplicate
as described elsewhere.30 The experimental design consisted
of an interpolation between different concentrations of each
pesticide based on a grid, in which the validation samples
lie nested within the training grid as follows: mixtures
containing a pesticide at concentration levels of 30, 90, 150,
or 210 ng/mL were selected for the training set, whereas
those containing 20, 40, or 60 ng/mL were chosen for
validation. In this way, 20 chromatograms for the training
set and 5 for the validation set were used, both in triplicate.
The Levenberg-Marquardt algorithm was used to estimate
the four-parameter Weibull function associated with the
profile of the overlapping chromatographic peaks. These
parameters were defined as follows:Ŝm (peak height),t̂m
(residence time), Bˆ (dispersion of the analytical signal values
from Sm), and Ĉ (related to the function profile, which is
associated with the inflection points of the curve). The
population-based evolutionary algorithm for ANN models,
written in C language, was run on a Pentium IV compatible
PC. To use the four parameters of the Weibull curve as inputs
to the assayed network topologies, they were scaled over
the range 0.1-0.9 for MLP models and from 0.2 to 0.8 for
PUNN models. Thus, the new scaled variables were ex-
pressed as follows:Ŝm

/ ,t̂m
/ , B̂*, andĈ*. In a similar way, the

concentrations of the analytes in the sample defined by [CF]
and [P], which are used as outputs for the tested network
models, were also scaled, in this case, over the range 0.1-
0.9 for MLP models and between 1.0 and 2.0 for PUNN
models. These new scaled independent variables were
designed by [CF̂*] and [P̂*]. After the network models are
optimized, estimations should be descaled according to the

Figure 4. Estimation of the weights for the common connections
by the evolutionary algorithm.

∆ ) ∆m + [U(0, 1)T(f) (∆M - ∆m)] (19)

Ri(t) ) (1 + â) Ri(t)

if A(s) > A(s - 1), ∀ s∈{t, t - 1, ...,t - r}
) (1 - â) Ri(t)

if A(s) ) A(s - 1), ∀ s∈{t, t - 1, ...,t - r}
) Ri(t) in the other cases (15)

P(∆A) ) exp(- ∆A
T ) (16)

âc ) âa + âb (17)

wic )
wia + wib

2
(18)

898 J. Chem. Inf. Model., Vol. 45, No. 4, 2005 HERVÁS ET AL.



same equation. The performance of the algorithms was tested
using various network topologies that were run 30 times.
The accuracy of each model was assessed in terms of the
standard error of prediction (SEP) for the results obtained
for both data sets, that is, SEPT for the training set and SEPG

for the generalization set:

whereAi and Âi are the experimental and expected values
for the analyte concentration in the sample,Ah i is the mean
of the experimental values of the training set, or of the
generalization set, andn is the number of patterns used (nT

for the training set andnG for the generalization set). The
nonparametric Kolmogorov-Smirnov (K-S) and Levene
tests were performed using SPSS 12.0 statistical software33

and used to evaluate the performance of the different models
in selecting the most suitable network topology.

RESULTS AND DISCUSSION

The quantitative analysis in HPLC requires the resolution
of the analytes being studied, but sometimes chromatographic
separation is not accomplished. In these cases, chemometric
resolution of these compounds is possible. The mathematical
approach may be successful when either the spectra or the
concentration profiles of the compounds are distinguishable
from each other. Thus, a variety of chemometric methods
have been developed over the past few years for quantitative
analysis of unresolved peaks.34-38 Most of these are based
on the data matrix obtained from HPLC with the diode array
detector (DAD). Although based on the information provided
by both spectra and chromatographic data, these approaches
do not work well for highly overlapping peaks, and therefore,
ANN calibration models have been recently reported as an
alternative on account of the lower standard deviation (SD)
and better results achieved in the prediction.22-24

Recently, we have published a powerful chemometric tool
based on the use of pruned standard MLPs for quantifying

highly overlapping chromatographic peaks, such as those
involved in the determination of twoN-methylcarbamate
pesticides (CF and P) by HPLC with CL detection.25 This
kind of detection system provides an additional degree of
complexity to the analytical problem addressed because,
unlike the methods based on the bilinear data matrix from
HPLC/DAD, the analytical data are supplied by a single
detector, and therefore, the chemometric approach should
work well without the aid of spectral discrimination.
Although this methodology does produce good results, they
could be further improved with the use of PUNN models,
on account of their greater potential, particularly in order to
obtain simpler models with more chemical interpretation. In
fact, PUNN models are more robust tools for the inference
of possible interactions between input and output variables,
chromatographic profile and the analyte (CF and P) con-
centrations in the sample, in our case.

Prediction Ability Features of PUNN versus MLP
Models. To further compare the predictive ability of both
models in terms of SEPG, topology, the number of connec-
tions, robustness, and chemical interpretability, one output
neural network model was made, considering the output layer
as a single node corresponding to the concentration of the
analyte in the sample to be analyzed.

Table 2 shows the statistical results obtained over 30 runs
using both neural network models. The same 4:3:1 and 4:2:1
architectures were chosen to start both model selection
processes for CF and P, respectively, the aim being to
compare the different ANN models using the same initial
architecture. As can be seen, both models provided quite
good results (in terms of accuracy and precision) for
determining the concentration of each pesticide from strongly
overlapping chromatographic peaks. The PUNN model,
however, yielded better results for all tested features: smaller
SEP mean values, SD, and the number of connections,
especially for the determination of CF. For this pesticide,
the proposed PUNN method is more robust, taking into
account the lower SD values provided for both SPET and
SPEG.

To verify the hypothesis of significant differences in the
mean SEPG value and the number of connections, three
statistical tests were performed using the SPSS statistical

Table 1. Parametric Values Used by the Evolutionary Algorithm

population parameters
structural mutation

parameters: interval, [∆m, ∆M]
parametric mutation
parameters of eq 16

parameter value parameter value parameter value

size,Nm 1000 add nodes [1, 2] R1(0) 1
maximum number of hidden

nodes,p
8 delete nodes [1, 3] R2(0) 5

number of independent
variables,k

4 add connections [1, 2p] â 0.5

exponent interval, [-M, M] [-5, 5] delete connections [1, 2p] r 10
coefficient interval, [0, L] [0, 5]

Table 2. Accuracy and Statistical Results of the MLP and PUNN Models (over 30 Runs)

connections SEPT SEPG

analyte starting topology mean SD mean SD best worst mean SD best worst

CF 4:3:1 MLP 15.2 1.79 4.52 0.71 3.47 5.88 3.13 1.17 1.60 5.67
4:3:1 PUNN 12.6 1.10 3.70 0.34 3.01 4.53 3.12 0.36 2.38 4.07

P 4:2:1 MLP 9.97 1.38 4.20 0.86 2.98 6.34 3.72 1.16 2.28 6.42
4:2:1 PUNN 8.10 1.24 3.92 1.05 2.68 6.54 3.82 1.09 2.24 5.81

SEP)
100

Ah i
x∑

i)1

n

(Ai - Âi)
2

n
(20)
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package.33 A normal distribution can be assumed for all of
the variables to contrast because thep values of the K-S
test are over 0.01. A Student’st test was performed in order
to ascertain whether the differences, in the mean values,
among the SEPG values and the number of connections
obtained with each model were significant using, previously,
a variance Levene test. The results provided by the Levene
and Student’st tests are shown in Table 3, from which the
following conclusions can be drawn: (1) The variance of
the error is smaller by using PUNN models in the prediction
of CF but not for the prediction of P. (2) The performances
in means of the two models are not statistically significant,
with a confidence level of 0.01, for the predictions of CF
and P. (3) The complexity of the model, based in terms of
the number of connections of the network architecture, is
significantly lower for the PUNN models, both in variance
and in mean.

According to this study, the following final optimal
network models were those reported in Table 4, in which
quantitative equation systems for the direct determination
of the contribution of each pesticide to the overlapping
chromatographic bands used: (a) the parameters estimated
by the Weibull regression of the peak, (b) the optimized
network weights, and (c) the sigmoidal and the product unit
transfer functions for MLP and PUNN models, respectively,
which also were included on account of the simplicity of
the proposed network architectures. In summary, both
topologies can be readily used for the quantification of the
analytes in the sample, although the PUNN topology provides
more simple and robust models (see Table 2). On the other
hand, it is noteworthy that PUNN models offer better results
in mean for the training set, which contains mixtures with
extreme concentrations of the analytes, because in that set a
stronger interaction between the input variables is observed.

Chemical Interpretation Provided by MLP and PUNN
Models. Neural network modeling has been used extensively
over the past decade for solving a great variety of nonlinear
chemical problems, but it suffers from the perception of being
a “black box” heuristic tool. The current introduction
evolutionary algorithms for designing network models enable
architectures with reduced dimensions to be obtained in such
a way that the mathematical transformation between the input
and output can be easily implemented (see equations shown
in Table 4). From these simpler models, quality chemical
information could be derived to explain the analytical
problem at hand. Thus, the value of each transfer function
involved in the model is calculated over the range studied
for the input variables,Ŝm

/ , B̂*, Ĉ*, and t̂m
/ , to establish their

relative contribution for the determination of CF and P, which
is essentially derived through the so-called base transfer
function. To evaluate the chemical interpretation provided
by both models, it is necessary to observe, at least from a
qualitative point of view, how the variation of the concentra-
tion of both pesticides affects the shape of the chromatograms
achieved using different mixtures of pesticides (see Figure
5). As can be seen, the two pesticides show quite different
chromatographic behaviors; in fact, chromatograms with the
same concentration of CF and a variable concentration of P
exhibit a gradual increase in the peak height,Sm, and a slight
decrease in the residence time,tm (Figure 5A). Meanwhile,
tm remains virtually constant andSm increases with an
increase in the concentration of CF for chromatograms of
mixtures with a constant concentration of P and a variable
concentration of CF (Figure 5B). Further conclusions can
be drawn regarding the variation of the profile and the
dispersion of chromatographic peaks (C andB parameters,
respectively) as a function of the pesticide concentration in
the mixture. By comparing chromatograms in parts A and
B of Figure 5, it can be inferred that parameterB is more
related to the variation of CF in the mixture, whereas
parameterC is more linked to the change of P.

In light of these qualitative considerations and using the
quantification equations shown in Table 4, the most notable
features of the proposed models are discussed below from
both computational and chemical point of views.

Table 3. Statistical Comparison (p values of the Levene and
Student’st Tests) of the Generalization Ability (SEPG) and Number
of Connections (n) for ANN Models

SEPG number of connections

MLP vs PUNN Levene test t test Levene test t test

carbofuran 0.000 0.991 0.018 0.000
propoxur 0.868 0.743 0.299 0.000

Table 4. Quantification Equations and Accuracy Provided by the Optimized MLP and PUNN Topologies as Applied to the Determination of
Carbofuran Propoxur from Overlapping Chromatographic Peaksa

carbofuran network models

4:3:1 MLP topology 4:3:1 PUNN topology

quantification
equations

[ĈF]* ) -2.88+ 4.02ĥ1 + 4.51ĥ2 - 0.61ĥ3 [ĈF]* ) -0.30+ 0.66ĥ1 + 3.33ĥ2 - 0.80ĥ3

transfer
functions

ĥ1 ) 1/[1 + exp(-4.91- 0.66Ŝm
/ - 0.64B̂* - 0.62Ĉ* - 0.27t̂m

/ )] ĥ1 ) (Ĉ*)0.27(t̂m
/ )0.84

ĥ2 ) 1/[1 + exp(-0.98Ŝm
/ - 0.88B̂*)] ĥ2 ) (Ŝm

/ )0.55(B̂*)0.43(t̂m
/ )0.07

ĥ3 ) 1/[1 + exp(-0.92Ŝm
/ + 4.40B̂* + 1.95t̂m

/ )] ĥ3 ) (Ŝm
/ )0.67(B̂*)1.03

propoxur network models

4:2:1 MLP topology 4:2:1 PUNN topology

quantification
equations

[P̂]* ) 1.29- 4.80ĥ1 - 1.20ĥ2 [P̂]* ) 0.95+ 0.39ĥ1 - 0.74ĥ2

transfer
functions

ĥ1 ) 1/[1 + exp(3.82+ 2.16Ŝm
/ - 0.36B̂* - 1.01Ĉ* - 0.01t̂m

/ )] ĥ1 ) (Ŝm
/ )0.99(Ĉ*)-0.84( t̂m

/ )0.08

ĥ2 ) 1/[1 + exp(-0.02+ 1.20Ŝm
/ - 3.30B̂*)] ĥ2 ) (Ŝm

/ )0.13(B̂*)0.03(t̂m
/ )4.66

a [ĈF]*and [P̂]* ∈ [0.1, 0.9] and [1.0, 2.0] for MLP and PUNN, respectively.Ŝm
/ , t̂m

/ , B̂*, and Ĉ* ∈ [0.1, 0.9] and [0.2, 0.8] for MLP and PUNN,
respectively.
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Models for Carbofuran.For the MLP model, from the
equations shown in Table 4 and after evaluating the relative
contribution of each sigmoidal function for the MLP model,
it follows that theĥ1 and ĥ2 sigmoidal functions exhibit an
appreciable influence on the determination of [Cˆ F]*. The
respective dependencies are as follows:ĥ1 andĥ2 functions
essentially depend onŜm

/ and B̂* parameters, in that order,
and also onĈ* and t̂m

/ (throughĥ1), albeit to a lesser extent.
In all cases, these dependencies are direct. Regarding the
other sigmoidal function,ĥ3 (related in a negative manner
to [ĈF]*) depends on the input variables in the following
order of importance:B̂*, t̂m

/ , andŜm
/ . From the foregoing, it

follows that Ŝm
/ and B̂* are the two parameters of the

Weibull curve that most strongly influence the quantification
of CF in the sample; theĈ* and t̂m

/ parameters also
contribute to this, although to a lesser extent, especiallyt̂m

/ .
From the quantification equations shown in Table 4 for

the PUNN model, it follows that (1) the value of [Cˆ F]*
depends mainly on the interaction between the parameters

Ŝm
/ and B̂*, the contribution oft̂m

/ being practically negli-
gible, as inferred from the exponential values of the base
term ĥ2 and from Figure 6A, in which the values of each
product unit term ofĥ2 are plotted versus the scaled input
variable over the range 0.2-0.8. The direct dependencies
of the Ŝm

/ and B̂* parameters on [Cˆ F]* are clear. (2) The
other product unit functions, which bear a direct (ĥ1) and
inverse (ĥ3) linear relationship with [Cˆ F]*, depend to a
similar extent on the four parameters of the Weibull curve
(see exponent of these parameters inĥ1 and ĥ3). In short,
the parametersŜm

/ andB̂* are the key for the determination
of CF in the sample. From the relative value of the exponents
for them in the transfer functionĥ2, the following relative
order of importance can be inferred:Ŝm

/ > B̂* . t̂m
/ . Thus,

from a chemical point of view, the peak height and the
dispersion of the chromatographic peaks (Ŝm

/ andB̂* param-
eters, respectively) are closely related to the concentration
of CF in the analyzed sample; the residence time,t̂m

/ , also
contributes, although to a lesser extent.

Figure 5. Overlapping chromatograms of mixtures containing carbofuran and propoxur to different extents. (A) Curves 1-4 correspond
to samples with a fixed amount of carbofuran (30 ng/mL) and variable amounts of propoxur (30, 90, 150, and 210 ng/mL, respectively).
(B) Curves 1-3 correspond to samples in which the amount of propoxur is fixed at 30 ng/mL and carbofuran varies at 30, 90, and 150
ng/mL, respectively.

Figure 6. Relative contribution of the product unit terms used for the quantitative determination of the pesticides provided by PUNN
models. (A)ĥ2 function for CF, (B)ĥ1 function for P, and (C)ĥ2 function for P.
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Finally, by comparing the ability of both network models
to provide quality chemical information, a greater degree of
interpretability of the addressed chemical problem was
achieved using the PUNN model. In fact, the influence of
the input parameters on the output can be more easily inferred
from the relative values of their exponents in the product
units. Specifically, and regarding the interpretability provided
by the MLP model, the PUNN model enables us to establish
the relative influence between theŜm

/ and B̂* parameters,
and clearly, residence time,t̂m

/ , practically does not con-
tribute to the determination of CF in the sample (compare
transfer functions for both network models proposed for CF
in Table 4). These conclusions are in line with the qualitative
conclusions drawn from the overlapping chromatographic
peaks shown in Figure 5.

Models for Propoxur.In the case of the MLP model, both
sigmoidal functions exhibited an appreciable influence on
the determination of [Pˆ ]*, although ĥ1 did so to a greater
extent. The respective dependencies are as follows:ĥ1 is
closely related toŜm

/ andĈ* and to a lesser extent toB̂* and
practically does not depend ont̂m

/ ; ĥ2 depends onB̂* andŜm
/

in that order of importance. According to these results, we
can infer that theŜm

/ variable is essential for determining
[P̂]* in the sample, whereas the contribution of the other
variables, especiallyĈ*, provide a better fitting in its
quantification. By using the PUNN model for the determi-
nation of P in the sample, and from the quantification
equations shown in Table 4, it follows that the value of [Pˆ ]*
basically depends on theŜm

/ , Ĉ*, and t̂m
/ parameters accord-

ing to the relative values of the exponents in the product
unit functions and from the plots shown in parts B and C of
Figure 6. Contrary to the MLP model, the PUNN one clearly
establishes the influence of thet̂m

/ parameter on the deter-
mination of P, as can easily be inferred from the plots shown
in Figure 6C.

CONCLUSIONS

As shown in this study, multiplicative neural networks
based on product units, designed using an evolutionary
algorithm, have proved to be a more computationally
powerful tool than sigmoidal networks for quantifying highly
overlapping chromatographic peaks provided by a single
detector. So, PUNN models provide a better information
ability, smaller network architectures, and more robust
models (smaller standard deviation) and are quite simple and
easier to interpret from both a computational and a chemical
point of view, in contrast to the classical MLP models.
Simple and clear relationships can be established between
the input variables (the four parameters, estimated by NLR,
of the Weibull curve fitted to the chromatographic peaks)
and the output variable (the concentration of the analyte in
the sample).
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